Modelo de IA puede predecir la aparición de Alzheimer

Manuel Abreu Ortiz
Publicado por: Manuel Abreu Ortiz - social@manuelabreuo.com

Especialista en Tecnología/Ciberseguridad #CTO #PMO #Adviser #CoachPolitico #Podcasting

El modelo, desarrollado por IBM y Pfizer, es capaz de predecir con un 71% de precisión la aparición de la enfermedad en personas sanas.

Esta investigación, publicada en The Lancet eClinical Medicine, ofrece avances importantes en la búsqueda de vías diferentes para predecir el Alzheimer. La gran mayoría de investigaciones existentes sobre la predicción de esta enfermedad se han centrado en personas que empezaban a mostrar signos de deterioro cognitivo, o aquellos con factores de riesgo como los antecedentes familiares o la genética. No obstante, la enfermedad de Alzheimer puede afectar a un amplio espectro de personas, incluidas aquellas sin antecedentes familiares u otros factores de riesgo. Es por ello que el estudio de IBM Research es uno de los primeros en utilizar la IA para predecir resultados en personas sanas sin otros factores de riesgo en juego.

El modelo de IA utiliza pequeñas muestras no invasivas del lenguaje del paciente obtenidas a través de tests cognitivos. A través de marcadores lingüísticos, el modelo de IA produce unos resultados predictivos valiosos, con una tasa de acierto superior a las predicciones a escala clínica (59%) basadas en otros datos biomédicos disponibles.

Base del estudio y próximos pasos

Este modelo ha sido entrenado utilizando los datos longitudinales a largo plazo del estudio Framingham Heart Study, un estudio amplio multigeneracional que comenzó en 1948 y que ha impulsado miles de estudios de salud. Debido a la naturaleza de estos datos, los investigadores pudieron verificar las predicciones de su modelo con los resultados reales. Por ejemplo, si el modelo de IA analizara una muestra del lenguaje de un participante de 65 años de edad y predijera que iba a desarrollar la enfermedad a los 85 años, los investigadores podrían comprobar en los registros para determinar si se realizó ese diagnóstico.

Con esta investigación, uno de los objetivos de IBM es poder entrenar el modelo utilizando conjuntos de datos ampliados. Eso incluiría datos que podrían estar disponibles para los investigadores sanitarios en poco tiempo y reflejarían una diversidad de datos geográfica, socioeconómica y racial más amplia. Como resultado, los algoritmos de los investigadores de IBM podrían servir como un activo clínico potencial para los profesionales sanitarios al evaluar una visión holística de la salud y los factores de riesgo de un individuo.

En enero de 2017, IBM pronosticaba la forma en que la IA contribuiría a detectar y diagnosticar padecimientos mentales precisamente mediante el uso del lenguaje en los cinco años siguientes. “Si el cerebro es una caja negra que no entendemos totalmente, entonces el habla es la clave para descifrarla. En 5 años, lo que decimos y escribimos será utilizado como indicador de nuestro bienestar de salud física y mental. Los patrones en nuestra habla y escritura serán analizados por nuevos sistemas cognitivos y proveerán signos reveladores de enfermedades mentales y neurológicas en estado temprano de desarrollo, lo que ayudará a los médicos y a los pacientes a prevenir, monitorear y hacer seguimiento de dichas enfermedades”, señalaba IBM en esa oportunidad, agregando que sus científicos estaban utilizando transcripciones y audios de entrevistas psiquiátricas, junto a técnicas de machine learning, para identificar patrones en el habla. “En el futuro, técnicas similares podrían ser utilizadas para ayudar a los pacientes con Parkinson, Alzheimer, enfermedad de Huntington, trastorno de estrés postraumático, y hasta condiciones de comportamiento, como autismo y TDAH. La computación cognitiva puede analizar las palabras habladas o escritas del paciente, para buscar indicadores que se encuentran en el lenguaje, como significado, sintaxis y entonación”.

Vía | Diario TI